Optically transparent cathode for dye-sensitized solar cells based on graphene nanoplatelets.
نویسندگان
چکیده
Commercial graphene nanoplatelets in the form of optically transparent thin films on F-doped SnO(2) (FTO) exhibited high electrocatalytic activity toward I(3)(-)/I(-) redox couple, particularly in electrolyte based on ionic liquid (Z952). The charge-transfer resistance, R(CT), was smaller by a factor of 5-6 in ionic liquid, compared to values in traditional electrolyte based on methoxypropionitrile solution (Z946). Optical spectra and electrochemical impedance confirm that the film's absorbance scales linearly with R(CT)(-1). Electrocatalytic properties of graphene nanoplatelets for the I(3)(-)/I(-) redox reaction are proportional to the concentration of active sites (edge defects and oxidic groups), independent of the electrolyte medium. Dye-sensitized solar cell (DSC) was assembled with this material as a cathode. Semitransparent (>85%) film of graphene nanoplatelets presented no barrier to drain photocurrents at 1 Sun illumination and potentials between 0 and ca. 0.3 V, but an order of magnitude decrease of R(CT) is still needed to improve the behavior of DSC near the open circuit potential and, consequently, the fill factor. We predict that the graphene composite is a strong candidate for replacing both Pt and FTO in cathodes for DSC.
منابع مشابه
High Efficient Transparent TiO2 Nanotube Dye-Sensitized Solar Cells: Adhesion of TiO2 Nanotube Membrane to FTO by Two Different Methods
In order to fabricate transparent TiO2 nanotube dye-sensitized solar cells, anodically growth nanotube membranes are detached from Ti substrate by a re-anodization method. The membranes are transferred on FTO glass by two different methods. At the first one, 100mM Ti-isopropoxide is used to make TiO2 nanoparticles for adhering TiO2 nanotube membranes to FTO and ...
متن کاملInvestigation the effect of substrate photo-electrode based on screen method on performance of dye-sensitized solar cells
In this paper we studied preparation of working films of dye-sensitized solar cells using screen printed method. The organic dye based on phenoltiazine with cyanoacrylic acid as the electron donor group utilized as photosensitizer. Fluorine-doped thin oxide FTO coated glass is transparent electrically conductive and ideal for use in dye-sensitized solar cells. FTO glass was coated by screen pri...
متن کاملApplication of azo dye as sensitizer in dye-sensitized solar cells
An azo dye used as photosensitizers in Dye-sensitized solar cells DSSCs. Azo dyes economically superior to organometallic dyes because they are color variation and cheap. The spectrophotometric evaluation of an azo dye in solution and on a TiO2 substrate show that the dye form J-aggregation on the nanostructured TiO2 substrate. Oxidation potential measurements for used azo dyes ensured an energ...
متن کاملSynthesis and Application of Two Organic Dyes Based on Indoline in Dye-Sensitized Solar Cells
In this paper we sensitized two new organic days dye 1 and dye 2 based on thioindigo with phenothiazine as the electron donor group. We used acrylic acid and cyanoacrylic acid as the electron acceptor anchoring group in dye 1 and dye 2 respectively. The proposed dyes were sensitized from phenothiazine as the starting material by standard reactions and characterized by different techniques such ...
متن کاملEnhanced charge transportation in a polypyrrole counter electrode via incorporation of reduced graphene oxide sheets for dye-sensitized solar cells.
In this work, reduced graphene oxide (RGO) sheets are successfully introduced into the conductive polypyrrole (PPy) matrix as conductive channels and co-catalyst, through simple incorporation of graphene oxide (GO) into PPy and subsequent in situ reduction from GO/PPy to RGO/PPy composite film. The RGO/PPy film is fabricated as a counter electrode for dye-sensitized solar cells, and it exhibits...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- ACS nano
دوره 5 1 شماره
صفحات -
تاریخ انتشار 2011